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1. Motivation 

- A challenge to the society as a compelling issue, rapid expansion and cross-area outturn

- Detection approaches have become a major alternative to manual fact-checking, attract significant 

attention

- A huge research gap in multi-modal fake news detection

- Models based on non-generalized dataset, various dataset limitations, narrow content, biased

- Average accuracy of the existing solutions around 75% 

- ML approaches that rely on sole underlying premise of latent patterns 

- Major limitation on the efficiency of the detection

- Little to no research focuses on early detection effectiveness when the required data is usually 

insufficient at this stage – if the approach cannot effectively detect fake news shortly, it will have 

marginal usage in the real world, despite result in experimental conditions
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2. Research Aims 

1. Address Limitations of Unimodal Approaches by exploring the limitations of existing unimodal 

solutions and utilizing the complementary strengths of multimodal data.

2. Integrate Dynamic Fusion Techniques based on a dynamic fusion framework where the modality 

adaptively contributes to detection

3. Utilize Graph Theory for Network Analysis through Graph Convolutional Networks to understand 

dissemination patterns

4. Propose a Comprehensive Multimodal Detection model–As the ultimate objective of this work, 

the proposal of a model that aims to tackle fake news across many platforms and formats by 

merging various models together.
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3. Research Goals and Hypothesis 

Hypothesis: The integration of multimodal techniques, including text, image, and graph-based data,

enhances fake news detection by capturing complex patterns that single-modality approaches cannot

address. The use of dynamic weighting in multimodal models optimises detection performance by

adjusting the contribution of each modality based on confidence levels.

RG1: Investigate the characteristics of the current body of literature on fake news and disinformation

detection

RG2: Explore graph theory and its implementations in the fake news spreading through tweet

networks and patterns

RG3: Integration of a multi-module system as a new approach to fake news detection across different

content types (articles, tweets, and visual content) employing various machine learning models

customised for specific problems, including ensemble approaches for textual and visual content

classification.
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4. Motivation undertaking research on the basis of SLR and the theoretical 

background

1. Which models and approaches are used in multimodal fake

news detection?

2. Which machine learning techniques and approaches are

effective in detecting fake news propagation patterns on

social media platforms?
3. What are the most effective machine learning models in fake

news detection using small training data?

4. What is the most commonly used training dataset for fake

news detection models, and what are the main challenges

regarding datasets?
5. What are the approaches to detecting visual content fake

news?

6. Biggest challenges faced in multimodal fake news detection

using machine learning?
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Article Method used

[21] CNN an VGG-19

[26] BERT to learn text features, VGG-19 pre-trained for image

[22] BDANN, a BERT-based domain adaptation neural network

[47] DNN, CNN, VGG 16, BI-LTSMword2vec

[83] Roberta and pretrained ResNet50

[58] Knowledge Augmented Transformer, CNN, BERT, VGG-19

[63] Multimodal Variational Autoencoder, RNN, EANN, VQA, Neural Talk,

4. Motivation undertaking research on the basis of SLR and the theoretical background
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4. Comparison on some of the exiting solutions 
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4. Comparison on some of the exiting solutions 
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5. Datasets



Lumbardha Hasimi

Fake News Detection and 

Disinformation

6. Methods 

- Dataset with cross-area content; namely Kaggle FCN, NYT, Jurawika, FAN-21, LIAR, ISOT, FakeEdit and ImageNet, 

MediaEval, CIFAKE

- Pre-processing of the data: nltk black list, semantic load, stemming, tokenization, normalisation algos

- Text content features, propagation features, image features, user/publisher features

- Feature extraction, classification and ensembling methods employed in the textual model

- ResNet, Inception, DesNet, Xception and convolutions layers for the visual model alongside text processing 

- Integration of models and layers to the final system, with the use of fusion/softmax
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Framework overview–methodological framework

Overview of the given approach featuring basic components 

corresponding to the multimodal classification

task
Initial components of the textual module of the solution
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Framework overview -GCN model
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Data Preprocessing – Textual Component
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Practical Implementation–GCN
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Practical Implementation–GCN 
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Framework overview–Textual Model
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Ensemble Learning based Fake News Detector – Textual model 

Framework Overview- Textual Model

Sample 

No 

 RF GB LR GL W2V Sums 

0 Weight 1 2 3 4 5  

0 0.95 0.96 0.97 0.98 0.99 2.93 

1 0.05 0.04 0.03 0.02 0.01 0.07 

1 Weight 1 2 3 4 5  

0 0.93 0.97 0.94 0.99 0.98 2.918 

1 0.07 0.03 0.06 0.01 0.02 0.082 

2 Weight 1 2 3 4 5  

0 0.91 0.56 0.03 0.95 0.99 2.876 

1 0.09 0.44 0.97 0.05 0.01 0.124 
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Framework overview-Visual model

- The visual component 

- Comparison of fake images and real-news images through a CNN model at the: 

• physical level- the fake-news images might be of low quality, which can be clearly reflected in 

the frequency domain

• semantic level- images also exhibit some distinct characteristics in the pixel domain (spatial 

domain)
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Framework overview–Visual Model
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Framework overview–Visual Model

Model Optimizer
Learning 

Rate

Batch 

Size

Xception SGD 0.00001 32

ResNet50 RMSProp 0.0005 32

DenseNet

201
Adam 0.0001 32

Inception-

ResNet-

V2

Adam 0.0001 32
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7. Fusion strategy–Integrated Modalities

Text

Tokenization/Stopword Removal/Lemmatization 

Vectorization via BoW/TF-IDF (non-embedding) 

Embeddings (GloVe)

Image

Resizing to 224×224

Normalization (0–1 range)

Feature extraction via ResNet50, DenseNet201.
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7. Fusion strategy–Integrated Modalities

Textual Output:

Probabilistic outputs (non-embedding)-averaged

▪ Embedding outputs:

• Word embeddings - averaged to form sentence vector

• Dimensionality: (n,300) + (n,512) - concatenated - (n,812)
Image Output:

•High-dimensional deep feature vectors from CNNs

•Combined through ensemble - unified vector representation

• Projection into Common Representation Space

- Projections - all features (dense embeddings + probabilities) 

concatenated and projected into a common dense vector
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𝐹 𝑎 = ቊ
𝑓𝑎𝑘𝑒 𝑖𝑓 𝑆 𝑎 > 𝜏
𝑛𝑜𝑡 𝑓𝑎𝑘𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Each content item α gets a fake score S(α)∈[0,1]

Applied as threshold τ:

• Fake if S(α)>τ

Modality Scores:

• Text: Stext=Ftext(x;θ)

• Image: Simage=Fimage(f;θ)

Dynamic Fusion – Based on Confidence:

• f(x)=α(x)ftext(x)+β(x)fimage(x) 

• Weights α(x),β(x) adjusted based on model confidence

8. Results and Evaluation-Evaluations Metrics

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁​

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃​

𝑇𝑃+𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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8. Results and Evaluation- Textual Model Results
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8. Results and Evaluation-Visual Model Results

Optimisation Techniques

•Overfitting prevention: Early stopping, regularisation, 
dropout
•Data augmentation: Rotation, zoom, flip, brightness, shear

•Hyperparameter tuning: Talos library
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8. Results and Evaluation-Visual Model Results

The Ensemble Model outperforms all individual models

•Using majority voting across models

Best Individual Model

•InceptionResNetV2

- Accuracy: 89.45%, F1-score: 89.37%

- High Precision (90.05%) and Recall (88.70%)

- Combines Inception modules + Residual connections

- Strong performance with lower complexity than 

ensemble

Worst performing: ResNet
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8. Results and Evaluation-Fused Model Results
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9. Discussion of the results in the light of the research goals

RG1:

• Dominance of unimodal approaches–Most studies focus on text-only or image-only detection.

• Limited adoption of multimodal methods, despite their potential to improve accuracy and 

contextual understanding.

• Text-based models (especially NLP) have shown strong progress, but still struggle with context 

and ambiguity.

• Visual models (CNN-based) detect manipulated images effectively but require large, diverse 

datasets and are computationally intensive.

• Lack of comprehensive multimodal integration (text + image).

• Static weighting methods in current fusion models lead to imbalanced results.

• Insufficient handling of big data modality integration and dynamic fusion strategies.
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9. Discussion of the results in light of the research goals

RG2: 

• Empirical evidence from GCN-based models supports the hypothesis that graph-based 

methods alone are sufficient for fake news detection.

• Training accuracy consistently exceeded 90%, and validation accuracy remained above 95%, 

demonstrating high reliability.

• Performance remained robust across variable data conditions, with fluctuations in loss attributed 

to data noise and distribution changes, not model limitations.

• Overfitting was effectively mitigated, supported by stable accuracy trends and loss behaviour

throughout training.

• Effective summarisation of tweet network structures ( retweets, mentions, replies) confirmed 

that relational and topological features carry strong discriminative power.
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9. Discussion of the results in light of the research goals

RG3: 
• Modality-Specific Architecture: Separate models for text (articles/tweets) and images were first developed and 

optimised individually before being fused. This modular design preserved the individual strengths of each 

modality, aligning with the hypothesis that multi-module systems improve performance.

• Fusion Technique: The study applied late fusion (processing each modality separately, then combining 
predictions), achieving 91.55% accuracy and 90% F1-score.This proves the hypothesis that balanced fusion 

techniques enhance detection by leveraging complementary information from each data type.

• Dynamic Weighting Mechanism: Predictions were weighted based on confidence scores, adjusting each 

modality’s influence dynamically. This adaptability confirms the hypothesis that context-sensitive fusion 
increases reliability and robustness of the detection system.
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9. Discussion of the results in light of the research goals

RG3: 
• Ensemble Learning on Visual Data: For image-based detection, multiple CNNs (ResNet50, DenseNet201, 

XceptionNet, InceptionResNetV2) were integrated via bagging (majority voting).

• The ensemble model outperformed individual models, achieving 90.85% accuracy vs. 89.45% (best single 

model), supporting the hypothesis that ensemble learning captures more complex patterns.

• Performance vs. Efficiency Insight: The study acknowledges that while the ensemble shows superior 

performance, computational trade-offs suggest single models (e.g., InceptionResNetV2) might be more 

practical in resource-constrained settings. This nuanced evaluation supports the hypothesis while recognising

operational constraints.
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10. Limitations

• High Computational Costs: Fusion techniques (late fusion, ensemble models) demand significant resources, 

limiting scalability and flexibility.

• Limited Modalities: Only text and visual data were integrated; audio/video modalities were excluded due to 

time/resource constraints.

• Training Data Bias: Model performance may still be influenced by biases in datasets, impacting 
generalisation across contexts.

• Interpretability Challenges: Fusion models, while effective, can become less transparent, especially with 

more than two modalities.

• Late fusion may lack deep integration of low-level modality interactions. The choice of attention type can 

significantly impact both performance and efficiency and requires trade-offs.
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10. Future Avenues

• Optimisation of fusion methods to reduce computational load without sacrificing performance.

• Expanding multimodality to include audio/video, with adaptable fusion strategies.

• Techniques to detect and mitigate data biases and improve cross-domain generalisation.
• Improved transparency and explainability in complex fusion and ensemble models.

• Focus on real-time adaptability for faster, scalable deployment in dynamic information ecosystems.
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Thank you for your attention!

Q&A
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