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Introduction
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Background: Terminology 1/3

Metaphor Technical Debt

● Metaphor: “understanding and experiencing one 
kind of thing in terms of another”

● Connects reason and imagination: is a matter of 
thinking and cognition

● Trying to enforce certain behaviour we use 
metaphors from an area in which desirable 
behavior occurs

● Technical debt metaphor adopted as a promise to enable 
budgeting of commonly neglected work

● Cognitive processes are prone to individual 
differences (an experience is usually unique and 
personal)

● Individuals have different experiences and a sense of "what 
should have been done" - metaphor evolved, many individual 
interpretations appeared

● Struggle with ambiguity begun
○ The effort to reintroduce the metaphor (W. Cunningham)
○ Mutually exclusive interpretations
○ Avoiding its direct adoption (e.g. Scaled Agile Framework) 
○ Evolving interpretation in time (SonarQube)

● Metaphorical understanding changes and will 
continue to do

○ The natural process of language evolution

● Effort to limit a metaphor applicability will likely fail
○ An attempt to limit another person in expressing their 

imagination
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● “The technical debt (TD) term refers to immature software development 
artifacts which are expedient in the short‑term, but introduce delayed 
consequences, sometimes making the future changes hard or almost 
impossible.”

● “TD embraces a set of actionable product technical debt items (TD Items) 
indicating these immature artifacts and their deviation from the desired 
optimal state.”

● Change of surrounding solutions (evolving technologies and their adoption by 
the industry) may be perceived as an act of incurring technical debt against 
our product, as it results in an evolution of its desired optimal state.

● Context is a key: what is considered TD in one system may not be such in 
another, for example when particular functionality becomes the core for one 
system, and is being retired in another as a result of optimizations towards 
serving a different customer base.
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Background: Terminology 2/3

Technical Debt as compromised quality 
attributes of SW development artifact
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● Refactoring, repayment or remediation 
○ The process of restructuring software artifacts, while not changing their original functionality. 
○ The act of removing the difference between the current and the desired state.

● Contagious debt
○ If not addressed, may cause other parts of the system to be contaminated with the same problem. 
○ Makes both the cost of removing it and its effects growing exponentially.

Background: Terminology 3/3
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How to propose a TD management approach that improves

● Business value

● Productivity of the engineering team 
○ Efficiency 

○ Effectiveness

● Developer satisfaction

Introduction: Problem
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Value-Based TD Model
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Introduction: Contribution - 1/2
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Year Paper Title and Year of Publication Overview

2011
Marek Stochel. Reliability of Feedback Mechanism Based on Root Cause Defect 
Analysis—Case Study. Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica, 
11(4):21–32, 2011.

Stresses the risk of improper aggregation of data derived from engineering 
assessments.

2011
Marek Stochel. Reliability and Accuracy of the Estimation Process—Wideband Delphi vs. 
Wisdom of Crowds. In 2011 IEEE 35th Computer Software and Applications Conference, pages 
350–359. IEEE, 2011.

Provides comparison of estimation techniques, followed by an overview of the 
Wisdom of Crowds approach and its applicability. 

2012
Marek G. Stochel, Mariusz R. Wawrowski, and James J. Waskiel. Adaptive Agile Performance 
Modeling and Testing. In 2012 IEEE 36th Annual Computer Software and Applications 
Conference Workshops, pages 446–451. IEEE, 2012.

Stresses the need for extending the TD perspective towards non-functional 
requirements (performance). Introduces the Wisdom of Crowds approach for TD 
management. 

2012
Marek G. Stochel, Mariusz R. Wawrowski, and Magdalena Rabiej. Value-Based Technical Debt 
Model and Its Application. In 7th International Conference on Software Engineering Advances 
(ICSEA’12), pages 205–212. IARIA Press, 2012.

Embraces our initial work on technical debt, indicating the need of applying the 
business (value-based) perspective for effective TD management. 

2020

Marek G. Stochel, Piotr Chołda, and Mariusz R. Wawrowski. On Coherence in Technical Debt 
Research: Awareness of the Risks Stemming From the Metaphorical Origin and Relevant 
Remediation Strategies. In 2020 46th Euromicro Conference on Software Engineering and 
Advanced Applications (SEAA), pages 367–375. IEEE, 2020.

Contains the TD research assessment; provides a refined perspective on technical 
debt (understanding of the term), stressing the need for clarity while defining the 
research scope in the TD field. 

2020
Marek G. Stochel, Piotr Chołda, and Mariusz R. Wawrowski. Continuous Debt Valuation 
Approach (CoDVA) for Technical Debt Prioritization. In 2020 46th Euromicro Conference on 
Software Engineering and Advanced Applications (SEAA), pages 362–366, 2020.

Describes the initial version of the CoDVA methodology, which was a result of an 
exploratory case study. 

2022
Marek G. Stochel, Piotr Chołda, and Mariusz R. Wawrowski. Adopting DevOps Paradigm in 
Technical Debt Prioritization and Mitigation. In 2022 48th Euromicro Conference on Software 
Engineering and Advanced Applications (SEAA), pages 306–313. IEEE, 2022.

Stresses the need for TD management in a~broadened product context (including 
DevOps artifacts), as a result of the case study.

2022
Marek G. Stochel, Mariusz R. Wawrowski, and Piotr Chołda. Technical Debt Prioritization in 
Telecommunication Applications: Why the Actual Refactoring Deviates From the Plan and 
How to Remediate It? Applied Sciences, 12(22:11347), 2022.

Discusses the preliminary results from an introduction of the enhanced CoDVA 
methodology (case study), additionally provides a Wisdom of Crowds overview in 
the context of CoDVA.

2023
Marek G. Stochel, Tomasz Borek, Mariusz R. Wawrowski, and Piotr Chołda. Business-Driven 
Technical Debt Management Using Continuous Debt Valuation Approach (CoDVA). 
Information and Software Technology, 164:107333, 2023.

Presents a comprehensive examination of the CoDVA approach, including an 
empirical investigation involving a case study and a survey, as well as a statistical 
analysis. The findings demonstrate the usefulness and advantages of the 
methodology. 

Introduction: Contribution - 2/2
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Introduction: Research questions
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Background

http://progress_bar_id


Background: Research context 1/4
1992 W. Cunningham - introduction of technical debt metaphor
“The debt incurred through the speeding up of software project development which results in a number of 
deficiencies ending up in high maintenance overheads”
2008 S. McConnell - TD definition
“A design or construction approach that is expedient in the short term but that creates a technical context in 
which the same work will cost more to do later than it would cost to do now (including increased cost over time)”

2009 M. Fowler: Technical Debt quadrant
2009 W. Cunningham Reintroduction of metaphor: https://www.youtube.com/watch?v=pqeJFYwnkjE: 
TD means writing code reflecting current understanding, but not writing code poorly and make good job later
2010 Managing Technical Debt workshop → (2018) TechDebt conference; P. Kruchten, R. Nord, I. Ozkaya, N. 
Brown  
2012 I. Ozkaya, P. Kruchten, R. Nord Technical Debt: From Metaphor to Theory and Practice: 
TD Landscape: “We hope to keep this debt metaphor useful by confining it to what is really a debt—namely, the 
invisible result of past decisions about software that negatively affect its future—and by not extending the 
concept to anything that has a cost.”
2015 A. Ampatzoglou, P. Avgeriou et al. The financial aspect of managing technical debt: A systematic 
literature review
2015 Z. Li, P. Avgeriou, P. Liang “A systematic mapping study on technical debt and its management”
2016 Dagstuhl seminar (P. Avgeriou, P. Kruchten, I. Ozkaya, C. Seaman): definition, conceptual model, 
dualistic nature (metaphor, and construct indicating immature SW development artifacts)
2017 ISO24765 “the deferred cost of work not done at an earlier point in the product life cycle”. 
2017 SEAA/Software Engineering and Technical Debt workshop → Software Engineering and Debt 
Metaphors (SEaDeM) (2022) (P. Avgeriou, A. Martini)
2021 V. Lenarduzzi et al. - A systematic literature review on Technical Debt prioritization: 3 papers covering 
business perspective
2022 J. Junior & G. Travassos “Consolidating a common perspective on Technical Debt and its Management 
through a Tertiary Study”, limited research on TD management embracing business perspective

2023/2024??? P. Avgeriou Vision paper on Technical Debt covering shift towards value creation

https://www.youtube.com/watch?v=pqeJFYwnkjE
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“In software-intensive systems, technical debt is a collection of 
design or implementation constructs that are expedient in the short 
term, but set up a technical context that can make future changes 

more costly or impossible. 
Technical debt presents an actual or contingent liability whose 

impact is limited to internal system qualities, primarily maintainability 
and evolvability”

● 2010 Managing Technical Debt workshop → TechDebt conference (2018)
● 2016 Dagstuhl Seminar on Managing Technical Debt in Software Engineering

○ Converge on common understanding of the technical debt term
○ Scientific rigor, requires crisply defined terms
○ Overloaded nature of the technical debt term accepted

■ A metaphor - facilitates design trade-offs discussions
■ A software development artifact - indicates immature artifacts incurring delayed costs in the future 

● 2017 Software Engineering and Technical Debt (SEaTeD) → SW Engineering and Debt Metaphors workshop (2022)

Draft Conceptual Model of Technical Debt (2016) Definition of Technical Debt (2016)

In Search of CoherenceBackground: Research context 2/4
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Our work on coherence of TD research (2020)

● The conceptual technical debt model is still relevant 

● We propose to aggregate the newly appearing technical debt 
concepts under Symptom

● Understanding technical debt referring to a set of 
development artifacts, focusing on quality impact may 
increase research consistency even further

○ Leading to determining Consequences and their Quality Impact

Background: Research context 3/4
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In Search of CoherenceBackground: Research context 4/4

Junior & Travassos: Conjectured conceptual model of TD (2022)
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Background: Product context 1/2

● What is a product?

● The more a product becomes a service, the more such robust perspective is required. 

Source: SDTimes: Atlassian unveils new DevOps Marketplace and the Atlassian Stack

Broadened product view encompasses all development artifacts which enable value creation for a customer. As a result, tools, 
automated tests, testing environments, logging, and monitoring capabilities become integral components of this perspective. 

https://sdtimes.com/atlassian/atlassian-unveils-new-devops-marketplace-atlassian-stack/
http://progress_bar_id


Bosch Software Defined Vehicle

Euromicro DSD/SEAA ’22 
Keynote: Dr. Arne Hamann - “Designing 
Reliable Distributed Systems”

Background: Product context 2/2

Large Scale Scrum (LeSS) Framework
(2014 - 2023)

● Our Exploratory Case Study (2016-2018) - published 
in 2022

● Major steps
○ Protection: enhanced automated test environment
○ Predictability of development efforts (cost & time) 
○ Speed: Improved development environment towards faster 

turnaround time for any new code change
○ Experiments with more risky code changes, possibly 

causing regression
○ Architectural TD remediation

● Each phase was an enabler/accelerator to the next one
● More artifacts identified (DevOps, DevSecOps, …)

Broadened Product View (embracing DevOps)

● Who are the actual end-customers and 
what do they consider the product to 
be?

● What is the original problem that the 
product is solving?

https://www.youtube.com/watch?v=tvERrAR9KHQ
https://less.works/less/framework/product
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Background: Value 1/2
Technical debt follows the financial debt construct (Ampatzoglou et al, 2015) 

● Principal - effort required to bring SW development artifacts to the optimal state 
● Interest - additional effort to be spent on maintaining SW development artifacts in their current suboptimal state 

(Li, Avgeriou, Liang et al 2013)

Mapping Study on quantifying TD interest (Arvanitou, Ampatzoglou, 2022)
● Lack of mathematical/analytical methods in this area

● Calculating TD interest is challenging
anticipating future SW changes and quantifying the additional maintenance effort required

● Scientific problem is far from being resolved

Our proposal to apply business perspective: TD interest → value creation
● Business perspective ensures the clarity (the product roadmap) engineering team requires

● No universal formula of determining the exact product value exists

● We prefer business valuation of the feature roadmap to engineering TD interest quantification 
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Background: Value 2/2

Technical Debt research: product value

Business Prioritization and Technical Debt Management

● Business prioritization guides the engineering team, led by 
the Product Owner, on the order and importance of feature 
development.

● Our proposed approach is relative valuation, which is highly 
relevant for effective prioritization.

● Among the various approaches discussed in the literature, 
only our approach offers a specific business-driven formula 
for managing technical debt.
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Literature Review
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● Limited success in searching scientific databases for relevant 
research

● Three approaches identified considering business perspective 
(Lenarduzzi, 2021)

● Snowballing technique (Wohlin, 2014) on
● Systematic Literature Review
● Systematic Mapping Study
● Tertiary Study
● Multivocal Literature Review

Literature: Knowledge Synthesis Studies

Technical Debt - knowledge synthesis studies
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Literature: Business-driven TD perspective 1/2

Implemented by vFunction platform

TD management studies considering business-perspective
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Literature: Business-driven TD perspective 2/2

Comparison of the selected TD management studies 
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Continuous Debt Valuation Approach
(CoDVA)
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Keith Eades “The New Solution Selling”
- Streamlining the selling process 

- Differentiating from the competition

- Decreasing the time spent between initial Qualifying 
and a successful, profitable Close. 

Methodology: CoDVA idea
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Alignment
- Evaluating TD in relation to a predicted future company portfolio

- Relative prioritization of technical debt items

- Shift “TD interest” → “value generation”
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Initial exploratory Case Study

- Cost-benefit analysis

- Monetary-based evaluation

- Retrospective analysis

Methodology: Initial Case Study

Suggestion of improvements
- TD items interdependence 

- Long-term perspective 

- Process: accuracy, cost and adoption 

CoDVA - initial study

http://progress_bar_id


Methodology: CoDVA (final)

CoDVA_index metric (CI): a relative cost-benefit ratio reflecting investment in a given TD item 
- Can be computed at any moment
- Determine the priority of allocating effort for TDI reduction
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● Roadmap features are prioritized by the Product Manager in Aha!
○ Scope for subsequent releases

● Each feature is assigned to a particular future release and receives a single 
business prioritization value bp

● Any bp aggregates several aspects, such as: potential benefits, investment 
size, strategic aspects, and time criticality

● Normalized value for an ith feature fpi, on a roadmap containing n features, is 
taken to calculate CoDVA_index

Methodology: CoDVA→Feature Priority   

From the development perspective each feature has a 
single priority number fpi reflecting the business needs.
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● Roadmap features are estimated using T-shirt sizing
○ XL - scaled to fit in a single release 
○ L - greater than half of the release 
○ M - 1/5 of the release 
○ S - 1/10 of the release

Hence {S; M; L; XL} correspond to coded values {0.1; 0.2; 0.6; 1} 

● If a feature cannot be realized in one release, it is split and 
released in consecutive ones

● A half-done feature might be hidden behind a feature flag 
if the scope is insufficient for the customers to use

Methodology: CoDVA→Feature Size

T-shirt sizing
- Used to focus on high-level project goals
- Rough estimation of the effort involved 
- Involves assigning relative T-shirt size estimates 

{S; M; L; XL} to different tasks or features based on 
their perceived complexity or the required effort

- Low-cost and quick (enables evaluation of a high 
number of items)

Planning Poker (Scrum Poker)
- Used for short-term sprint planning
- Uses story points
- More detailed estimation 
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Methodology: CoDVA→Roadmap Scope Stability

● Roadmap scope stability (rss) - the prediction to what extent the originally planned 
scope can be achieved in a future release. 

● Calculation

○ Releases have roughly constant cadence

○ Value determined retrospectively based on the completed releases, using a 
simple moving average (percentage of unchanged scope) from the preceding 
year releases.

○ For ith release in the future we decrease rss value according to the formula:

For current release rss0 = 1; if feature belongs to the next: rss1, etc. 
In a continuous delivery approach, the rss 
parameter can be used to gauge scope stability 
over a set period, e.g. a quarter. Scope is 
determined based on the predicted capability of 
the engineering team. 
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● TDI Effect - impact of a TDI on a new feature, 
indicating relative potential benefits: 

○ Mitigation of risks
○ Potential decrease in the feature 

implementation effort
○ Quality

● Estimated by the development team using T-shirt 
sizing, serving as an input for prioritization.

● Values {S; M; L; XL} corresponds to coded values 
{0.1; 0.2; 0.6; 1}, following  the pattern established 
for feature size Specific TDIs Generic TDIs

Generic TD item - may have a positive 
impact on a high number of the product 
roadmap features. Its prioritization is 
minimally affected by changes in the product 
roadmap.

Methodology: CoDVA→TDI Effect

Specific TD item - may only have a 
positive impact on a small number of the 
product roadmap features. It is 
susceptible to prioritization changes 
when business priorities evolve
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● TDI Cost - cost of TDI reduction

● Estimated using T-shirt sizing 

○ Values {S; M; L; XL} corresponds to coded values

{0.1; 0.2; 0.6; 1} for consistency
■ XL - scaled to fit in a single release 

■ L - greater than half of the release 

■ M - ⅕ of the release 

■ S - ⅒ of the release

Methodology: CoDVA→TDI Cost

For TDIs, our empirical experience is that they have to be split even 
if they are of size L, and XL. Otherwise, they would be postponed 
indefinitely, as the budget allocated for TD reduction is a fraction of 
the budget allocated for the release (usually 20% of effort). 
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● CoDVA_index value for dependent CIs

○ Involves evaluating the dependencies between TDIs

○ Typical in high-complexity projects where large elements need to be 
decomposed to identify enablers

● Enablers

○ A collection of smaller TDIs forms a tree structure where independent TDIs 
(enablers) are located at the leaves

○ Enablers can be addressed quickly, allowing for iterative corrective actions

● Dependency indication

○ The coefficient d = 1 when a dependency exists, or d = 0 when there is none

Methodology: CoDVA→Dependent CIs
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Preparation
● Two planned product releases R1, R2 that include three 

new features F1, F2, and F3, of size: M, L, XL.

● The Product Manager provides normalized feature 
priorities: fp1=1, fp2=0.9, fp3=0.5.

● Four TDIs whose impact (TDIe) on the features and cost 
(TDIc) is estimated by dev team.

● Roadmap scope stability, rss = 60%.

Methodology: CoDVA Example

CI1 = 3.00, CI2 = 2.16, CI3 = 6.60, CI4 = 2.20

Scenario (b) 
feature F2 priority value drops
(fp2: 0.9→ 0.6). 

CI1 = 3.00, CI2 = 3.24, CI3 = 8.40, CI4 = 2.20

Prioritisation: TDI3, TDI2, TDI1, TDI4
Prioritisation: TDI3, TDI1, TDI4, TDI2

Scenario (a) - initial

Generic TDI

Specific TDI
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TD Management Process

Business-driven TDM process based on CoDVA
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How to evaluate effectiveness of the methodology?
- Technical debt valuation is context-dependent
- Concept of cost (principal, interest) hard to incorporate

Solution: shift towards value creation, and observing 
the consequences on the application of the methodology

Profitability (value creation)
- RealizedBusinessValue metric, represented by the CoDVA_index, a relative benefit–cost ratio reflecting investment in a given TDI. 

TD repayment activities, influence value generation - relative valuation derived from the business perspective of the feature 
roadmap.

CoDVA: Evaluation

Wagner and Deissenboeck, 2019

Productivity
- Efficiency

- Velocity - the amount of work delivered by the engineering team in a sprint, measured in story points.
- DefectFixTime - the active resolution time for a defect (time spent in the In Progress state).

- Effectiveness 
- DeliveryPredictability - the ratio of fully successful sprints in the release, where all sprint completion criteria are 

consistently met, including the sprint goal.
- Releasability - a leading indicator of the final product quality, indicates the effort needed to maintain an acceptable level of 

quality, measured by the number of full regression test runs required until the quality criteria are met.
Developer morale (satisfaction)

- Countermeasure for efficiency and effectiveness.
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Case study
- Three-year-long case study (Jan. 2020–Mar. 2023)

- Large international company that creates, maintains and operates 
mission-critical telecommunication systems

- A single, embedded case study in which the case was defined as 
introduction of the CoDVA-based TDM by an engineering team 
focused on development and maintenance of software managing 
a fleet of devices for a video surveillance system

- The units of analyses were phases of the introduction of the 
method (sub-units were product releases)

CoDVA: Evaluation

Survey
- Focused on aspects of developer satisfaction

- Built in a way to avoid response bias
- Neutral wording
- Question order randomly chosen
- Used a 7-point Likert type answers (more nuanced responses, ability to discriminate)

- Pilot run executed to ensure the survey is capable to answer research questions
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CoDVA: Evaluation - Identified TD items

Technical Debt as compromised quality 
attributes of SW development artifact
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RQ1: Does the CoDVA-based TDM improve the value obtained from TD reduction when compared to 
pure engineering recommendations? 

- Evaluation of practical implementation of the proposed approach
- Assessment of realized business value

RQ2: Does the CoDVA-based TDM influence positively the productivity of the engineering team? 
- Efficiency - velocity and defect-fixing time
- Effectiveness - delivery predictability and time-to-market while maintaining a desired quality level

RQ3: Does the CoDVA-based TDM improve developer satisfaction? 
- Developer morale (affected by TD presence)

CoDVA: Evaluation (RQs)
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CoDVA: Evaluation

RQ1

RQ2

RQ3
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CoDVA: Evaluation
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Comparison
● CoDVA_real - Actual TD repayment according to CoDVA
● EngChoice - Expected budget allocation if the CoDVA recommendation not implemented 

Observations
● The median of EngChoice (5.14) is almost equal to the first quartile of CoDVA_real 

(5.02), and twice smaller than the CoDVA_real median (10.11). 

● In comparison with the pure engineering choice (CumulativeValue = 147), the relative 
business return on engineering investment grew by 27% when the CoDVA-based TDM 
was used (CumulativeValue = 187). 

● Comparing the mean values of EngChoice (10.51) and CoDVA_real (12.46), we observe 
that the difference between them (1.95) is two-and-a-half smaller than the difference 
between the median values (4.97).

CoDVA: Evaluation

Actual implementation did not follow exactly 
CoDVA recommendation (reasons):

● Continuous refactoring
● TDIs interdependency
● Cost
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CoDVA: Evaluation

Observations
● Velocity gradually growing, some turbulences in the time of changes

Interpretation: some changes (process/product) need to stabilize

● Velocity data does not show the signs of autocorrelation.
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CoDVA: Evaluation

Observations
- Team able to deliver more (shifting the mean), 39% increase (13.8→19.3) 
- Team slightly more stable sprint-to-sprint (reducing variance) - negligible
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CoDVA: Evaluation

Observations
- More time needed to fix a single issue???
- The median from an init phase is actually lower than the first quartile (Q1) for monitor phase, with 

unproportionally narrow both lower quartiles (Q1 and Q2)
Interpretations

- Easy-to-fix issues discovered and addressed early?
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"Effort required to work on bugs increased because now we have regular meetings where we look for 
bugs and we find them more often. I think that we also became more strict when we’re testing our PRs. 
So despite that effort increased, I think it’s a good change."

"(...) looking at the recently added features they are covered by automated tests. Adding changes to 
these areas is easier than it was at the beginning"

"(...) I think that all of us are focused on improvement of the code’s quality and readability. Some of the 
needed changes have been made, but still we need to do some more in the future."

Interpretation
- Increased focus on quality / craftsmanship
- Defect fixes embrace more complex refactorings

CoDVA: Evaluation
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CoDVA: Evaluation

Observation
- Team more predictable (by 60%)
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CoDVA: Evaluation

Observation
- Less regression cycles required to release, i.e. effort on product release stabilization 

decreased by 50%
Interpretation

- Faster time-to-market
- Lower cost, better predictability & quality

http://progress_bar_id


CoDVA: Evaluation

Observations
- Leaned towards positive answers, summarized by overall satisfaction
- Median neutral at least
- Favourable direction of changes: technical decisions, ability to develop new functionality, quality of the product code
- Interquartile range starting w/ negative: time spent on the work on bugs/issues
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Summary
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● Perceived business value from TD refactorings raised by 27%

● Engineering velocity increased by 39%

● Delivery predictability improved by 60%

● Effort spent on product stabilization decreased by 50%

● In 86% of the cases overall developer satisfaction grew

CoDVA-based TDM: Summary

The majority of the developers perceive the 
applied TDM strategy beneficial across

- Technical decisions made
- Ability to develop new functionality
- The experience while working with the 

product code 
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● CoDVA-based TD management is a new methodology that has yet to gain wider 
adoption

● To determine the efficacy of TD management approaches, it is important to focus on 
the consequences of TD presence (developer morale and productivity)

● Potential ambiguity of TD repayment consequences

● TDM activities not only impact the product but also affect the behavior of the 
developers conducting them

CoDVA: Implications for Researchers
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● Engineering view (TD identification) balanced with the business view (TD prioritization) 

● Aligning the TDM process with Agile Scrum increases the likelihood of the engineering team 
driving it

● CoDVA enhances architectural cohesion by strategically investing in the product areas that 
support new feature development

● The positive outcomes of TD repayment may not be immediately evident, but these activities 
can cause temporary deterioration in process measurements during periods of intensive 
changes

● The development team is more motivated to engage in TD management activities when they 
perceive the benefits of the approach

CoDVA: Implications for Practitioners 
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- Business
- Systematic Business Process (tracked/managed)

- Long-term prioritized feature roadmap

- Engineering
- Product 

- Version-controlled SW artifacts
- Broadened product view is desired

- Process 
- Prioritization: one SW development queue
- Communication: SW development team, PO, PdM
- Adaptive SW development process
- Engineering feedback elicitation and aggregation (Wisdom of Crowds)
- The approach works well irrespectively of the setting (remote or on-site work)

- CoDVA mapping
- Any worksheet could do

CoDVA: Generalization→Prerequisites
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● Threats
○ Case study related: the generalization power is limited by the selected case

○ Context-dependence: the purpose determines the evaluation measures for business prioritization

● Mitigations
○ The length of the case study reinforces the significance of the obtained results

○ Methodological triangulation: collating the data from the case studies and the survey

○ More generic approach to profitability (business value generation)

○ Used widely adopted techniques and standards: Scrum, TDM activities, ISO quality models, WoC

CoDVA: Generalization→Threats/Mitigation
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Future Work
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● TD management tipping point 

● Volatility of the desired state of the product

● Sociological aspects of TD management 

Future Work - ideas
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Thank you
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